Spray Polyurethane Foam in Unvented Cathedral Ceilings and Cathedralized Attics

RECOMMENDED DESIGN CONSIDERATIONS

Spray Polyurethane Foam Alliance
Copyright 2003  Re-Issued December 2008

To order copies of this publication, call 800-523-6154 and request Stock Number AY 141
BUILDING ENVELOPE COMMITTEE (BEC)
Mission Statement

To provide a technical basis for expanding the use of polyurethane-foam-in-place within the building envelope.

To achieve this mission, the BEC will review and support the development of methods for performance evaluation of SPF, participate in activities leading to development, documentation and dissemination of information on applications of SPF in different building envelopes and systems.

To participate in the planning, organizing, documenting and supporting of construction and monitoring of selected demonstration projects with SPF in the building envelope.

To assist the Management and IPC committees in developing and carrying out market oriented programs.

Tom Sojak, Chair
Gaco-Western

Tom Ponder
CertainTeed Corporation

Pat Dundon
The Insulation Man

Kelly Frauenkron
BASF Foam Enterprises

Mac Sheldon
Demilec

Peter Birkbeck
Icynene

Jim Andersen
BASF Foam Enterprises

Charles Waggoner
Demilec

Troy Herring
Lapolla

Bruce Schenke
BASF Foam Enterprises

Steve Crain
Dow

Steve Williams
Lapolla

Jose Luna
BaySystems North America

Ray Geiling
Evonik Goldschmidt Corp.

Roger Morrison
NCFI

Jim Lambach
Bay Systems North America

Mary Bogdan
Honeywell

Jason Hoerter
NCFI

Chris Porter
BioBased Insulation

Josh Ackerman
Huntsman

John Stahl
Preferred Solutions, Inc

Bob Duke
Carolina Comfort Foam

Monica Karamagi
Huntsman

Will Lorenz
Resin Tech / Henry Company

Ken Schmidt
Seward Sales

This brochure was developed to aid specifiers in choosing spray-applied polyurethane foam systems. The information provided herein, based on current customs and practices of the trade, is offered in good faith and believed to be true, but is made WITHOUT WARRANTY, EITHER EXPRESS OR IMPLIED, AS TO FITNESS, MERCHANTABILITY OR ANY OTHER MATTER. SPFA DISCLAIMS ALL LIABILITY FOR ANY LOSS OR DAMAGE ARISING OUT OF ITS USE. Individual manufacturers and contractors should be consulted for specific information. Nominal values which may be provided herein are believed to be representative, but are not to be used as specifications nor assumed to be identical to finished products. SPFA does not endorse the proprietary products or processes of any individual manufacturer, or the services of any individual contract.
DESIGN CONSIDERATIONS

Definition

Unvented attics, also known as conditioned or cathedralized attics, are created by applying insulation directly to the underside of the roof deck and omitting or sealing all ventilation paths against air leakage (soffits, ridge and gable vents). This application extends the thermal envelope to include the attic space, increasing the energy efficiency of the building and decreasing the potential for moisture problems.

A recent literature review by the Florida Solar Energy Center [1] cites several studies that report energy savings of 9-23% can be achieved by using an unvented attic in hot climates. Most of the energy savings comes from moderating the air temperature surrounding HVAC equipment and ductwork in the attic, and eliminating leakage to the outside from ducts installed in the attic space. Building Science Corporation also indicated that using an unvented attic in most cold climates decreases the heating load by approximately 10%.[2]

How Spray Polyurethane Foam Insulation Creates an Unvented Attic

Many building experts believe that spray foam provides the most durable and effective means to create an unvented attic. Both low density (1/2 lb per ft³) and medium density (2 lb per ft³) spray polyurethane foams (SPF) may be used for this application in any U.S. climate, dependant on design considerations.

SPF should be applied directly to the underside of roof sheathing either between or over the rafters or joists of a roof of any slope. Thickness should be sufficient to satisfy local energy code requirements for R-value and vapor resistance. SPF must be applied over soffit and ridge areas, and on all gable-end walls to completely contain the attic within the thermal envelope, to ensure it is properly insulated and sealed against air infiltration.

Architectural details of this application are shown in Figure 1 for unvented cathedral ceilings and Figure 2 for cathedralized/unvented attics.

Unvented Attics and the Model Building Codes

Unvented attics, insulated and air sealed with SPF, have been successfully used for decades. Beginning with the 2004 IRC Supplement, the 2006 International Residential Code (IRC) first included unvented attics to be used in all U.S. climate zones (see R806.4, page IRC-70), with additional amendments made in the 2007 Supplement. [3].

According to new IRC language incorporated into the 2006 IRC and 2007 Supplement, unvented attic assemblies shall be permitted if all of the following conditions are met:

1. The unvented attic space is completely contained within the building thermal envelope.

   The SPF insulation applied to the underside of the roof deck and to gable-end walls instead of the attic floor. The SPF must be continuous and tied into the top plates of exterior walls. The thermal conditioning of the attic depends on heat transfer through the
attic floor, therefore the attic floor should be left uninsulated. SPF must be applied as to prevent any air leakage between the attic and the exterior.

2. **No interior vapor retarders are installed on the ceiling side (attic floor) of the unvented attic assembly.**
   Moisture build up in the attic is avoided by allowing water vapor transfer between the attic and occupied space. Therefore, no vapor retarders should be installed on the attic floor.

3. **When wood shingles (shakes) are used, a minimum ¼ inch (6 mm) vented air space must separate the shingles and the roofing underlayment above the structural sheathing.**
   SPF may be applied to roof sheathing under a wood shake or shingle roof provided the ventilation prescribed by the building code is provided. Venting under wood shakes and shingles is necessary for their long-term performance; therefore do not apply SPF directly to the underside of wood shakes and shingles.

4. **In climate zones 5, 6, 7 and 8, any air-impermeable* insulation shall be a/Class I or II vapor retarder, or shall have a vapor retarder coating or covering in direct contact with the underside of the insulation.**
   Medium density (closed-cell) SPF, applied to an adequate thickness will provide an integral vapor retarder of 1 perm or less. See the manufacturer’s technical data sheet as these thicknesses vary from 1”– 3”.

Low density (open-cell) spray foams are more vapor permeable than closed-cell foams, and alone do not serve as a Class I or II vapor retarder. A vapor retarder coating or film may be required for open-cell foams in cold climates. Note: The application of a vapor retardant coating on SPF installed in attics changes the fire characteristics of the assembly. SPF’s coated in this manner must be covered with a thermal barrier, a prescriptive ignition barrier or should have full-scale attic fire test data to support its use without a prescriptive ignition barrier or a thermal barrier.

* The definition of an air-impermeable insulation is a product having an air permeance equal to or less than 0.02 L/s-m² at 75 Pa (0.004 ft³/min•ft² at 1.57 lb/ft²) differential tested in accordance with ASTM E 2178 or ASTM E 283. Consult your spray foam supplier to determine if their foam is air-impermeable.

5. **Either Items a, b or c shall be met, depending on the air permeability of the insulation directly under the structural roof sheathing.**
   a) **Air-impermeable insulation only.** Insulation shall be applied in direct contact to the underside of the structural roof sheathing.
   b) **Air-permeable insulation only.** In addition to the air-permeable insulation installed directly below the structural sheathing, air impermeable insulation such as SPF, rigid board or sheet insulation shall be installed directly above the structural roof sheathing as specified in Table R806.4 for condensation control.
   c) **Air-impermeable and air-permeable insulation.** The air-impermeable insulation shall be applied in direct contact to the underside of the structural roof sheathing as specified in Table R806.4 for condensation control. The air permeable insulation shall be installed directly under the air-impermeable insulation.
In item c, the chart below identifies the thickness of the air-impermeable insulation (SPF) when being used in combination with other (air-permeable) insulation products. To protect against interior condensation in cold climates, foam must be applied to a thickness adequate to insure the interior surface of the SPF is not at the dew point temperature at the winter design temperature of the building.

<table>
<thead>
<tr>
<th>IECC Climate Zone</th>
<th>Minimum Thickness for Air-Impermeable Insulation (SPF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2B 3B - Tile Roof Only</td>
<td>0</td>
</tr>
<tr>
<td>1, 2A, 2B, 3A, 3B, 3C</td>
<td>R5</td>
</tr>
<tr>
<td>4C</td>
<td>R10</td>
</tr>
<tr>
<td>4A, 4B</td>
<td>R15</td>
</tr>
<tr>
<td>5</td>
<td>R20</td>
</tr>
<tr>
<td>6</td>
<td>R25</td>
</tr>
<tr>
<td>7</td>
<td>R30</td>
</tr>
<tr>
<td>8</td>
<td>R35</td>
</tr>
</tbody>
</table>

The International Codes are *model* building codes which may be modified before they are accepted by state and local jurisdictions. A few jurisdictions specifically require vented attics, despite changes to the model building code. **Check with the applicable building code in your jurisdiction to be sure unvented attics are approved before using spray foam in this type of application.**

**Fire Safety and Spray Polyurethane Foam in Unvented Attics**

SPF applied in attic spaces must be properly protected against fire, and all SPF requires either a thermal barrier, prescriptive ignition barrier, or a code compliance research or evaluation report from a certified agency that explains the alternate conditions for application. In every case, a 15-minute thermal barrier such as 1/2” gypsum board shall separate an attic from interior spaces. For unoccupied attics (accessed only for service of utilities -- no storage), prescriptive ignition barriers must be used (1/4” plywood, 1.5” mineral wool, etc.), unless a spray foam manufacturer has specific fire test data to qualify an alternative assembly. Depending on accessibility and use, some attics may be considered occupied or fully accessible spaces. **Encourage the builder to contact the local code official to qualify the attic space. Contractors should consult with spray foam suppliers to determine proper fire protection methods for attic applications.**

**Shingle Life and Shingle Warranties**

All insulations, including SPF, fiberglass, cellulose, insulated sheathing and reflective insulations, when applied in direct contact to the roof deck to create an unvented attic, will increase shingle temperatures slightly. Increased shingle temperatures may reduce the service life of asphalt and wood shingles, but have little effect on metal or tile roofs.

The Florida Solar Energy Center literature review suggests that many factors will affect shingle temperature and asphalt shingle service. This review developed some important conclusions from numerous research reports regarding roof life from unvented attics:
• Attic ventilation has less effect on roofing with light colored building materials.
• Peak daily shingle and sheathing temperatures are higher for sealed attic versus vented attic construction but still well below the acceptable service temperature for the shingles and sheathing materials.
• The impact of shingle color on temperature is far greater than the effect of attic ventilation.
• The impact of geographic location on shingle temperatures is also much greater than that associated with ventilation.
• One estimate referenced by this review paper showed no attic ventilation would reduce shingle life by less than a year in Miami. A second paper in this review indicated approximately a 2-year reduction for a 20-year shingle for the same conditions.

Asphalt shingle manufacturers have taken a variety of positions regarding their warranties when their shingles are applied over unvented attics. Some manufacturers allow the use of their shingles over an unvented attic, others may void their warranties. **Before installing SPF to create an unvented attic, confirm that the builder or homeowner has reviewed their shingle manufacturer’s warranty and understands the potential implications of this application.**

**Roof Leak Detection**

Insulation applied under a roof deck may hinder roof leak detection. Current inspection technologies, including IR cameras, enable more accurate detection of hidden moisture in roofs and walls. Homeowners should have their homes regularly inspected by a professional as part their routine preventive maintenance program.

**Additional Benefits of Spray Polyurethane Foam for Unvented Attics and Cathedralized Roofs**

Using SPF to create an unvented attic or cathedralized roof may have benefits beyond simple energy savings. Depending on the type of SPF used, SPF under a roof deck may:

• block rainwater and snow from blowing in through the soffit, ridge and gable vents
• prevent soffit failures and roof deck uplift under high wind conditions
• help reduce roof water leakage when primary roofing system (shingles and underlayment) fail under high wind conditions.
• reduce ice-damming in cold climates through air sealing and an improved thermal profile
• decrease the fire hazard potential by keeping burning embers out of attics during wildfire events
• reduce rodent and pest infestations
REFERENCES
